Project C03: Interpretable machine learning: Explaining Change
Today, machine learning is commonly used in dynamic environments such as social networks, logistics, transportation, retail, finance, and healthcare, where new data is continuously being generated. In order to respond to possible changes in the underlying processes and to ensure that the models that have been learned continue to function reliably, they must be adapted on a continuous basis. These changes, like the model itself, should be kept transparent by providing clear explanations for users. For this, application-specific needs must be taken into account. The researchers working on Project C03 are considering how and why different types of models change from a theoretical-mathematical perspective. Their goal is to develop algorithms that efficiently and reliably detect changes in models and provide intuitive explanations to users.
Research areas: Computer science
Publications
M. Muschalik, F. Fumagalli, B. Hammer, E. Huellermeier, KI - Künstliche Intelligenz 36 (2022) 211–224.
A. Artelt, R. Visser, B. Hammer, Neurocomputing 558 (2023).
M. Muschalik, F. Fumagalli, B. Hammer, E. Huellermeier, in: Machine Learning and Knowledge Discovery in Databases: Research Track, Springer Nature Switzerland, Cham, 2023.
M. Muschalik, F. Fumagalli, R. Jagtani, B. Hammer, E. Huellermeier, in: Communications in Computer and Information Science, Springer Nature Switzerland, Cham, 2023.
F. Fumagalli, M. Muschalik, E. Hüllermeier, B. Hammer, Machine Learning 112 (2023) 4863–4903.
F. Fumagalli, M. Muschalik, E. Hüllermeier, B. Hammer, in: ESANN 2023 Proceedings, i6doc.com publ., 2023.
F. Fumagalli, M. Muschalik, P. Kolpaczki, E. Hüllermeier, B. Hammer, in: NeurIPS 2023 - Advances in Neural Information Processing Systems, Curran Associates, Inc., 2023, pp. 11515--11551.
M. Muschalik, F. Fumagalli, B. Hammer, E. Huellermeier, Proceedings of the AAAI Conference on Artificial Intelligence 38 (2024) 14388–14396.
Show all publications