Project B05: Co-constructing explainability with an interactively learning robot

In Project B05, researchers from the field of computer science are exploring non-verbal explanations between humans and machines. A robot is tasked to learn an action by interacting with a human, such as a specific movement. Misunderstandings can arise during this process because human users often do not know how robots acquire skills – is the robot’s direction of gaze important, or are there other factors that influence machine learning? 

Researchers on this project are investigating study participants’ perceptions of how a robot works and are developing visualizations that can be used to improve users' understanding of the robot. In addition to this, the researchers are analyzing how gender, age, and prior knowledge can impact interactions with the robot, and how explanatory strategies can change while interacting with the robot. The findings of this project will situate the concept of explainability in a social context.

 

Research areas: Computer science

Project leaders

Prof. Dr.-Ing. Anna-Lisa Vollmer

More about the person

Staff

Helen Beierling, M. Sc.

More about the person

Support staff

Leonie Dyck, Bielefeld University

Arthur Maximilian Noller, Bielefeld University

Mathis Tibbe, Bielefeld University

Pub­lic­a­tions

Technical Transparency for Robot Navigation Through AR Visualizations

L. Dyck, H. Beierling, R. Helmert, A.-L. Vollmer, in: Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction, ACM, 2023, pp. 720–724.


Forms of Understanding of XAI-Explanations

H. Buschmeier, H.M. Buhl, F. Kern, A. Grimminger, H. Beierling, J. Fisher, A. Groß, I. Horwath, N. Klowait, S. Lazarov, M. Lenke, V. Lohmer, K. Rohlfing, I. Scharlau, A. Singh, L. Terfloth, A.-L. Vollmer, Y. Wang, A. Wilmes, B. Wrede, ArXiv:2311.08760 (2023).


What you need to know about a learning robot: Identifying the enabling architecture of complex systems

H. Beierling, P. Richter, M. Brandt, L. Terfloth, C. Schulte, H. Wersing, A.-L. Vollmer, ArXiv:2311.14431 (2023).


The Power of Combined Modalities in Interactive Robot Learning

H. Beierling, A.-L. Vollmer, ArXiv:2405.07817 (2024).


Advancing Human-Robot Collaboration: The Impact of Flexible Input Mechanisms

H. Beierling, K. Loos, R. Helmert, A.-L. Vollmer, in: 2024.


Show all publications