
GitLab-Tutorial and Guidelines
for the TRR 318 Constructing

Explainability

Authors:
Amelie ROBRECHT
arobrecht@techfak.de,
Vivien LOHMER
vivien.ebben@uni-bielefeld.de

updated version from September 13, 2022

mailto:arobrecht@techfak.de
mailto:vivien.ebben@uni-bielefeld.de

Contents

1 Git vs. GitLab and why you need both 3

2 Installation and First Setup 4
2.1 Git Installation . 4
2.2 Git Account . 4
2.3 GitLab Account . 5

2.3.1 SSH key . 6
2.3.2 Showing hidden files . 7

3 First steps 8
3.1 Cloning an existing repository . 8
3.2 Pushing new files to GitLab . 9
3.3 Branches . 12
3.4 Merge . 13

3.4.1 Merging branches . 13

4 Guidelines for data storage - The fileshare 15
4.1 Where and how to save data: General information 15
4.2 Systematic storage scheme . 16
4.3 Example: Application of the scheme in projects A01 and A04 17

First we have some regular information on how to read this tutorial and how
it was created:
We decided to use Git and GitLab for datastorage, because it offers the op-
portunity to backtrack changes and recreate previous versions of the files.
This tutorial is developed for TRR-members who have never worked with
Git or GitLab before and wants to help you through the first steps. We do
not want to give a complete documentation for Git and GitLab, but a tool
to do the first steps. If you need further information we suggest to use
https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html.
If you are using Git and GitLab in your TRR318 subproject, we recommend
you to have one person in charge. The person does not need to be an ex-
pert in GitLab but should be reliable and interested. This GitLab person can
always contact us to ask questions and get support.
Finally here are some hints on how to read this Tutorial:

• If no specifications are given always stay with the Default settings!

• If somewords in the codeboxes arewritten in capitals you have towrite
your personal information (e.g. YOURNAME: here you have to write
your name and not YOURNAME)

• the code in the blue boxes has to be tipped into the Terminal/GitBash

But now, let’s start.

2

https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html

1 GIT VS. GITLAB ANDWHY YOU NEED BOTH

1 Git vs. GitLab and why you need both

If you have never worked with Git before, it is probably best to have a short
look on this two minute Video:
https://www.youtube.com/watch?v=2ReR1YJrNOMotherwise this analogy taken
from Reddit (thanks to the colleague who passed it to me) might give you a
good impression of the idea behind Git and GitLab:

 Think of it like this:
You are working on a paper. You write five paragraphs. Then your friend comes along later,
and writes another five paragraphs. Then you edit a few paragraphs, and your friend edits a
few more paragraphs.
At the end of it, there are some issues, but its hard to coordinate who edited what and when.
With a system like GIT, youwould first create the file on the GIT server, and add your changes.
Then, you commit those changes to the repository, which will basically say ’Hey, this file ex-
ists and looks like this.’
Then, your friend checks out that repo, pulling the latest changes. He adds some stuff, then
commits to the repo. The repo says ’Hey, this file exists and is different from the previous
version, so we will save it as version 2.’
So on and so forth. The GIT repo allows you and your friend to make edits and keep the
changes sort of sequential, so if your friend fucks up at version 5, you can say ’GIT, please
check out Version 4’ and you can get back to fixing things. Each commit has an owner, so you
knowwho did what. And you can compare Version X to Version Y, and seewhat has changed,
making it easier to spot what new changes have been made.
GIT also allows you to branch. So you and your friend are on version 10 of the doc, but you
want to try something new. Your friend wants to continue, so you create a branch called
’MyNewIdea’ and start working on that. This is now a separate path of writing, while your
friend continues on the original, which is usually considered the master or trunk. Get it?
Branches and trunks.
So GIT basically lets multiple people access a central chunk of what is usually code, and
make alterations to it without stepping on each others toes. There’s a bunch of other stuff
GIT lets you do, but simplified its a way of being able to track changes to a document with
multiple users messing with the document, including making branches of the main docu-
ment for individual development
GitLab is just a website that works using GIT that has a lot of code. Most of it is opensource,
and the idea there is that if you wanted to add some paragraphs from someone on GitLab,
you would just check out their GIT repository and add it to your document, more or less.

Git is a version control system
to locally check changes in your
project and push & pull changes
from remote repositories like Git-
Lab, it is installed on your system.
The changes that you put into Git
cannot be seen in GitLab, because
they are only stored locally.

GitLab is a service that allows to
host a project on a remote reposi-
tory and have some more features
(project management, code shar-
ing, wiki, bug tracking, CI/CD), it
allows to work on a project from
different systems and with sev-
eral people. To use GitLab Git is
needed.

3

https://www.youtube.com/watch?v=2ReR1YJrNOM

2 INSTALLATION AND FIRST SETUP

2 Installation and First Setup

In this section we will install Git and set up the GitLab-Account. Finally we
will set up an SSH-key, to simplify your workflow a lot.

2.1 Git Installation

First we have to install Git.
Download Git from https://git-scm.com/ and install following the instruc-
tion for your system.
HINT for MAC:

If you are usingMacOS it is the best (but not the only option) to install Home-
brew. You can use it at a later state again.
HINT for WINDOWS:

You can either use the Command Prompt/ Eingabeaufforderung or GitBash,
which is automatically installed through the git installation.
I prefer GitBash!

You can check whether the installation worked by checking your current Git
version:

Git version
git --version

2.2 Git Account

Run the following commands in your Terminal (Linux/MacOS) or GitBash
(Windows). The commands set or check either your username or your mail-
ing address connected to git. This setup only needs to be done once or if
you want to change the deposited information.

You can use whatever name you want to use for git. If the name you use
includes a space you have to use quotation marks, I would not recommend
to do this.

Username

Changes your Username

git config --global user.name YOURNAME

Shows your current Username

git config --global user.name

4

https://git-scm.com/

2 INSTALLATION AND FIRST SETUP

To change the e-Mail connected to Git please use the Mailadress you will
also use to set up GitLab (university mail).
HINT:

Make sure you tipped in email and not mail. You can set a mail as well, but
that is a different variable!

Mail

Changes your Mailadress

git config --global user.email MAILADRESS

shows the currently connected mail

git config --global user.email

If you want to check all the information that is deposited in Git, you can gen-
erate a list:

Summary

shows all configuration information of your Git-Account

git config --global --list

2.3 GitLab Account

This section will show you how to set up a GitLab-Account.
Please use the account provided by the Bielefeld University (not your pri-
vate account and not the Uni Paderborn-Account).

If you are working in Bielefeld:
https://www.uni-bielefeld.de/ub/digital/forschungsdaten/dienste/gitlab/
HINT:

Use the BITS-Login, not the regular one!

If you are working in Paderborn:
You need to set up a Guest Account. To do this please use your @cam-
pus.upb.deor the@uni-paderborn.de address (the registration is only opened
for these domains). To do this visit: https://gitlab.ub.uni-bielefeld.de/
users/sign_in and create an account:

• Click Register Now

• Fill in the (Web)-formula and send it

• Now you need to check your mails

• Open the confirmation mail and click on the link

5

https://www.uni-bielefeld.de/ub/digital/forschungsdaten/dienste/gitlab/
https://gitlab.ub.uni-bielefeld.de/users/sign_in
https://gitlab.ub.uni-bielefeld.de/users/sign_in

2 INSTALLATION AND FIRST SETUP

• Now you can login to your Account

Afterwards please send an e-mail to your projects GitLab-person and tell
her/him the e-mail you used, so you can be added to the subprojects repos-
itory.

2.3.1 SSH key

You do not necessarily have to set up a SSH key, but we would highly rec-
ommend it. If you have set up an SSH key for GitLab you do not always have
to enter your username and password when pushing files to GitLab, so it
helps you to smoothly work with Git and GitLab.

If you want to use SSH, this is how you do it:

1. Type into your Terminal/GitBash

generate SSH-Key

ssh-keygen

2. stay with the given directory1

3. If you already have an SSH-File in that folder it will tell you:

Overwrite
.../.../... already exists. Overwrite (y/n)?
>> y

select y to generate a new key!

4. You can enter a passphrase or leave it empty, this is up to you.

5. Make sure to copy the public link, NOT the private one.
You can either copy the public link using the Terminal or by opening it
manually (see HINT):

copy public link

cat ~/.ssh/id_rsa.pub

1If you want to save the key in another directory: This video explaines how to use cd to
change a directory.

6

2 INSTALLATION AND FIRST SETUP

HINT:
Open the id-rsa.pub file in the .ssh-folder with a text editor and copy
the content to the clipboard

ATTENTION:
The created .ssh-file is a hidden file. Please activate show hidden files
in the working directory to see the created file (see section 2.3.2.

6. Login to GitLab → Edit Profile → SSH-keys → Paste SSH key from the
clipboard (and optionaly name it) and save it (see Fig. 1).

Figure 1: SSH keys

2.3.2 Showing hidden files

Windows:

• Select the Start button

• Select Control Panel > Appearance and Personalization.

• Select Folder Options, then select the View tab.

• Under Advanced settings, select Showhidden files, folders, and drives,
and then select OK.

Mac:

• Open the folder where you want to search hidden files.

• Press the Command + Shift + . (period) keys at the same time.

• The hidden files will show up as translucent in the folder.

7

3 FIRST STEPS

• If you want to obscure the files again, press the same Command + Shift
+ . (period) combination.

3 First steps

You are done now with setting up Git and GitLab.
Now we will see how to clone an existing repository from GitLab, how to
push files after changes were made and how to create branches.

3.1 Cloning an existing repository

Your projects GitLab-person will tell you the link to your projects repository.
HINT:

If you do not have acess to the Repository you probably did not tell her/him
your GitLab-Mailadress by now.

1. Clone the repository URL (fig. 2)

Figure 2: clone with SSH

2. changeworking directory to the folder youwant to store the repository
in.
If you never did that before, please watch this short Youtube-Video
https://www.youtube.com/watch?v=1rUFqkRQkok. It is easier to follow
a video in this case.

Path

change the path to the directory you want to save the Reposi-
tory in

cd PATH

8

https://www.youtube.com/watch?v=1rUFqkRQkok

3 FIRST STEPS

HINT:

If you are using Windows you can open GitBash in a specific directory
by opening the folder and clicking the right mouse button. Then you
can select Git Bash Here and you do not have to change the directory
manually.

3. Clone the repository to Git

Clone URL

clone the URL you copied from GitLab

git clone URL

Now you have the cloned repository on your system. You can now work on
the files, make changes and save them on your system. If the changes are
done and you are happy with it, you can first put (add) it toGit and upload
(push) the file to GitLab again, so everyone has access to it (section 3.2).

3.2 Pushing new files to GitLab

This short example guides you through your (probably) most frequent work-
step: You changed the content of a file and want to put the new version on
GitLab now. In this example you added a new word to the file try.txt, it was
hello world before and is hello new world now.

Save the file The file should be saved in the cloned gitlab-folder you cre-
ated in the workstep in section 3.1.

Change Directory

You need to change your working directory to the gitlab-folder as
well

cd .../TESTPROJECT

HINT:

You can use Git Bash Here again.

Change the Branch By default you will be in the master/main branch of
the repository - here you are not allowed to push anything2. Depending on
where you want to push your data, you need to change the branch. To do

2To which branch you can push in GitLab depends on the status you have in the repository.
We suggest to only give the GitLab-person the opportunity to push on the main branch, to
prevent chaos.

9

3 FIRST STEPS

this type in:

Branch

Change to the branch BRANCH

git checkout BRANCH

To check which branch you are in at the moment use:

git branch

In our repository we have a branch for each Phd-student. The student as-
sistants do not have their own branch, but push to their superviors branch.

How to create a branch if you need one will be explained in section 3.3

Add file to Git This step adds the file to your local Git, after adding it to Git
it is not visible to others and not available in GitLab.

Check Git Status
git status

This shows the changes you did. It should say: Changes not staged
for commit... modified: try in red. This means Git noticed the changes
in the file but did not do anything about it yet.

Add file to Git
git add try.txt

Now the file is added to Git.

Check Git Status
git status

It should say: Changes to be committed... modified: try in green. This
means you can commit the changes now.

Write a Commit Message A commit message is supposed to sum up the
required information about the changes youmade. The message should be
as short as possible.

10

3 FIRST STEPS

Commit message

git commit -m "MESSAGE"

The message should be short but contain all the necessary infor-
mation about your changes. Guidelines for commit messages for
the Cross-Project-Repository can be found in section 4.

Check Git Status
git status

It will tell you now: nothing to commit, working tree clean. Git ac-
cepted the update now, but GitLab did not. To have Git and GitLab
at the same level, we have to tell GitLab about the changes as well.

Push to GitLab Now you can push the File from Git to GitLab to make it
visible to everyone who has access to the repository. The commit message
from the previous step will be displayed as well.

Push to GitLab
git push

If you added an SSH-key to GitLab it will be pushed straight away,
otherwise you need to enter username and password.

Changes in GitLab (fig. 3)

Figure 3: You can see the changes is GitLab now

Check Git Status
git status

Both should be equal now!

11

3 FIRST STEPS

3.3 Branches

Branches are copies of a repository that exist next to the main repository.
It might make sense to start a new branch if you want to make significant
changes, work in a completely different directory or try different approaches
next to each other. In the end you can merge the branch with the original
one to combine them or keep them existing as optional versions.
In our project we are planing to have a branch for each PhD-student3. Once
in a while the personal branches will bemerged to themain-branch initiated
either by the GitLab-Person of your subproject or by you sending a merge
request (see section 3.4.1.
Create a new branch first:
Go to the GitLab-Repository you want to use, select Branches and click on
New Branch (Fig 4).

Figure 4: select and create new branch

Now you can name your new branch and – if the repository consists of mul-
tiple branches already – select the branch you want to copy from the drop
down menue (fig. 5):

Figure 5: Type in branch name

Nowyoucan switchbetween thebranches inGitLab, clone themandupload
changes to specific branches (fig. 6).

To work with the new branch, just select it in the Switch branch/tag drop-
down menue and clone it as described in section 3.1.
If you start to work on a new file it is best to create a merge request quite
early (you can send a merge request for an empty file as well) so everybody
can see, that you are working on this in the main branch.

3The research assistants will not have their own branches but will work on the PhD-branch

12

3 FIRST STEPS

Figure 6: select branch from drop-down

3.4 Merge

In GitLab you caneithermerge files or branches. Wemergebranchesmainly,
so we will focus on that4.
As all of you will have their own branch to work on and it will be Amelie
and Michael to merge everything to the main-branch, you will not be the
one answering merge requests. Nevertheless you have to create a merge
request as soon as you want your files to be merged to the main branch.

3.4.1 Merging branches

If youmade changes in a branch and youwant tomerge it to another branch
you need to click on Merge Requests on the left and on New merge Request
on the right (fig. 7). Now you select the correct branches: The branch on the

Figure 7: Create a merge request to merge branches

left is the branch that you made the changes on, the branch on the right is
that you want to merge with (fig. 8).

4If the branches that are merged contain files with the same name, the files are merged into
a new file.

13

3 FIRST STEPS

Figure 8: Select the correct branches

Select the Assignee and press Submit merge request. Now the Assignee can
see the merge request. If there are nomerge conflicts the Assignee can just
merge the branches.

14

4 GUIDELINES FOR DATA STORAGE - THE FILESHARE

4 Guidelines for data storage - The fileshare

The following part of the tutorial describes an option, how andwhere to stor-
age your data. First we give you some general information concerning the
fileserver (4.1). Second you will find the scheme to name each file (4.2).

4.1 Where and how to save data: General information

When starting collecting data, one should start of thinkingwhere and how to
storage these data as well. Questions that arise could go beyond the basic
questions of how much data it will be and where do I store this data? One
should think of how can i name each file and folder in a way, that helps me
to organize the corpus in a reproducible way as well. Additionally it must
be a structure that makes it possible for other persons (colleagues, student
assistants,...) to understand this structure and find any kind of data indepen-
dently. In order to achieve that, you should think about the following things
before starting your data collection:

• Which sort of data will be generated?

• Is it only video data?

• Is it a mix of video and audio data?

• Will there be some other documents, which include meta information
concerning my corpus?

A good advice might be: Every thing its home.

One possible location to storage your data could be the fileserver with lo-
cation at Paderborn University. When deciding to storage your data here,
please contact Kai Biermeier (kai.biermeier@uni-paderborn.de).

To storage the files on the fileserver connect via VPN and go to the following
fileshare:

smb://fs-cifs.uni-paderborn.de/upb/groups/explain-members/data

IMPORTANT:
Employees from Bielefeld and Paderborn have to dial in via the VPN from
their home offices and fromBielefeldUniversity. When you are unsurewhich
VPNClient is the right, please contact the IMT (https://imt.uni-paderborn.
de).

On this fileserver you can find two folders for your specific poject:

Explain_[Project Number]_data

Explain_[Project Number]_documentation

15

mailto:kai.biermeier@uni-paderborn.de
smb://fs-cifs.uni-paderborn.de/upb/groups/explain-members/data
https://imt.uni-paderborn.de
https://imt.uni-paderborn.de

4 GUIDELINES FOR DATA STORAGE - THE FILESHARE

How youwant to structure your subfolders depends on you. We for instance
decided to subdivide Documentation into Documents and Presentations.

Each folder is for a specific kind of data.

• Data:
Save all kind of (e.g. video- and audio files, transcripts, ...) which are
collected during the data set or which are some kind of data, which
are necessary for your analysis in Explain_[Project Number]_data.

• Documentation:
Save all kind of meta date (e.g. tables, figures, presentations, ...) in
Explain_[Project Number]_documentation

4.2 Systematic storage scheme

Nowwewill describe a possible scheme to name each of your files in a way,
that helps you and your team to stay organized and find all files as fast as
possible.
Before starting with the scheme in detail, we want to give some general
rules as suggestions, which might be important if you and your colleagues
are using different operation systems (Windows, Mac, Linux, ...). After that
the scheme in general will be described, followed by an example. Here we
show how two project teams apply the naming scheme.

• Avoid ä, ö, ü, ß, ... and all kinds of special symbols like ? !, ... and so on.

• Avoid space in file names.

The schemeworkswith units of information (short: UoI). Each individual unit
can be understood as a self-contained unit of meaning. The name of each
file starts with the number of trial, followed by n units of information and
ends with number of project.

Generalized the scheme for each file and folder looks like this:

[Number of trial]_[UoI 1]_[UoI 2]_..._[UoI n]_[Project Number]

Each UoI transports a small amount of information about the file. To ensure
that the names of the files remain short, each unit works with abbreviations,
which can be chosen for each project and data collection. These abbrevia-
tions must be documented.

The following list summarizes the most important points regarding the pro-
cedure for naming the files:

• Each name of a file starts with the number of trial, started with 01.

• Each unit of information5 (short: UoI) in the name of a file is separated
with _ .

5A unit of information should include content of the file, e.g. camera perspective, date of
trial, or anything else that suits your kind of data.

16

4 GUIDELINES FOR DATA STORAGE - THE FILESHARE

• If one UoI is not neede, this part is exluded in the name of the file.

• In one unit of information you seperate the words with - .

• Each file is named with the same scheme.

4.3 Example: Application of the scheme in projects A01 and
A04

The following chapter shows you anexample of the application of the scheme
described above in the two projects A01 and A04. Various types of data are
collected during each data collection, e.g. .mp3, .mp4, .mts, .docx, .rtf,
First we will start with all the important Abbreviations you need to know for
understanding the naming of each file:

EE Explainee
EX Explainer
T Table
VR Video Recall
KS Competence Score
C Camera
A Audio
VP Number of trial
P Phase of experiment

Following the scheme described above(see 4.2), video and audio data of
each data set are named as follows:

[VP-number]_[perspective]_[phase of experiment]_[project number]

As shown in the following table each unit is defined as a self-contained unit
of meaning. For example [perspective] describes who is shown or can be
heard in the file.

[VP-number] [perspective] [phase] [projectnumber]
VPXX C-EE P0 A01

C-EX P1 A04
C-T P2 A01-A04
A-EE P3
A-EX P4
VR-P2 P5
VR-P4 P6
KS-EE
KS-EX

Table 1: Possible items to fill in each bracket

For better understanding of the scheme and practice, we conclude by giv-
ing a few examples of different file types.

Example 1: A video file, which shows EX, collected during the first recording
by A01. The file includes the second phase of the experiment:

17

4 GUIDELINES FOR DATA STORAGE - THE FILESHARE

VP01_C-EX_P2_A01

Example2: A project file to synchronize video andaudio from the first record-
ing from A01:

VP01_A01

Example 3: A transcript of the third recording in project A04 of the third
phase of experiment.

VP03_P3_A04

18

4 GUIDELINES FOR DATA STORAGE - THE FILESHARE

Thank you for reading this short tutorial on Git an GitLab. We hope it was
helpfull to you. In addition to this tutorial we created a Git/GitLab Cheat-
sheet, which sums up all the needed commands for the pulling/pushing
workflow. You are welcome to use it while working with Git and GitLab.
If you have any comments, questions or additional ideas on this tutorial,
please feel free to contact us.

Amelie Robrecht Vivien Lohmer
subproject A01 subproject A04

Social Cognitive Systems Group German Linguistics/Didactics of Language
Bielefeld University Bielefeld University

arobrecht@techfak.de vivien.ebben@uni-bielefeld.de

19

mailto:arobrecht@techfak.de
mailto:vivien.ebben@uni-bielefeld.de

	Git vs. GitLab and why you need both
	Installation and First Setup
	Git Installation
	Git Account
	GitLab Account
	SSH key
	Showing hidden files

	First steps
	Cloning an existing repository
	Pushing new files to GitLab
	Branches
	Merge
	Merging branches

	Guidelines for data storage - The fileshare
	Where and how to save data: General information
	Systematic storage scheme
	Example: Application of the scheme in projects A01 and A04

